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We introduce a new mixed finite element for solving the 2- and 3-dimensional wave equa-
tions and equations of incompressible flow. The element, which we refer to as P1D—P2,
uses discontinuous piecewise linear functions for velocity and continuous piecewise qua-
dratic functions for pressure. The aim of introducing the mixed formulation is to produce a
new flexible element choice for triangular and tetrahedral meshes which satisfies the LBB
stability condition and hence has no spurious zero-energy modes. The advantage of this
particular element choice is that the mass matrix for velocity is block diagonal so it can
be trivially inverted; it also allows the order of the pressure to be increased to quadratic
whilst maintaining LBB stability which has benefits in geophysical applications with Cori-
olis forces. We give a normal mode analysis of the semi-discrete wave equation in one
dimension which shows that the element pair is stable, and demonstrate that the element
is stable with numerical integrations of the wave equation in two dimensions, an analysis
of the resultant discrete Laplace operator in two and three dimensions on various meshes
which shows that the element pair does not have any spurious modes. We provide conver-
gence tests for the element pair which confirm that the element is stable since the conver-
gence rate of the numerical solution is quadratic.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

One of the key strengths of the finite element method is the extensive choice of element types; this strength leads to end-
less discussion amongst practitioners about the various benefits of different options. Alongside issues such as accuracy and
efficiency, a key issue is that of LBB stability. This issue manifests itself in the discretisation of the wave equation (and non-
linear extensions such as the shallow-water equations and the compressible Euler equations), and also features in the dis-
cretisation of the equations of incompressible flow. Consider the wave equation written as a two-component system
~ut þrp ¼ 0; ~u ¼ ðu1; . . . ;udÞ; ð1Þ
pt þr �~u ¼ 0; ð2Þ
which, in the case of zero boundary conditions, has weak form
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d
dt

að~u; ~wÞ þ bðp; ~wÞ ¼ 0;
d
dt

cð/;pÞ � bð/;~uÞ ¼ 0;
where
að~u; ~wÞ ¼
Z

X

~u � ~wdV ; bðp; ~wÞ ¼
Z

X

~w � rpdV ; cð/;pÞ ¼
Z

X
/pdV ;
for suitable test functions ~w and /. Finite element discretisation results in the matrix form
d
dt

Muui ¼ �Cip; i ¼ 1; . . . ; d;
d
dt

Mpp ¼
Xd

i¼1

CT
i ui;
where Ci, i ¼ 1; . . . ; d are the finite element approximations of the Cartesian components of the gradient operator, �
Pd

i¼1CT
i is

the finite element approximation to the divergence operator, Mu and Mp are the mass matrices associated with the finite
element spaces for u and p, respectively, and d is the number of physical dimensions. By eliminating u, we obtain the discrete
wave equation
Mp d2

dt2 p�
X

i

CT
i ðM

uÞ�1Ci p ¼ 0:
If the discrete Laplace operator ðMpÞ�1P
iC

T
i ðM

uÞ�1Ci has null space of dimension greater than one, this results in spurious
zero-energy solutions which pollute the solution after a period of time. The null space problem also manifests itself in
incompressible flow where the equations consist of a dynamical equation for ~u plus an incompressibility constraint which
is maintained by a pressure gradient:
~ut þ Nð~uÞ ¼ �rpþ~F; r �~u ¼ 0;
where N is the advective nonlinearity and ~F represents all other forces. In this case the spatial discretisation becomes
Mu d
dt

ui þ NiðuÞ ¼ �Cipþ Fi; i ¼ 1; . . . ;d;
Xd

i¼1

CT
i ui ¼ 0:
The pressure can be obtained by applying
P

iC
T
i ðM

uÞ�1 to the dynamical equation for ~u to obtain
0 ¼ d
dt

X
i

CT
i ui ¼ �

X
i

CT
i ðM

uÞ�1Cip�
X

i

CT
i ðM

uÞ�1ðFi � NiðuÞÞ;
for i ¼ 1; . . . ; d, which can be solved for p (after fixing the constant component p0) provided that
P

iC
T
i ðM

uÞ�1Ci has a 1-
dimensional null space containing only constant functions.

The analysis of the stability properties of finite element discretisations associated with spurious eigenvectors ofP
iC

T
i ðM

uÞ�1Ci was performed by Ladyzhenskaya [11], Babuska [3] and Brezzi [4]. The LBB stability condition is defined as
follows:

Definition 1. For any chosen function g consider the following equation
~uþrp ¼ 0; �r �~uþ g ¼ 0;
so that
�r2p ¼ g:
The weak form of this equation is
að~u; ~wÞ þ bðp; ~wÞ ¼ 0; cð/; gÞ þ bð/;~uÞ ¼ 0; ð3Þ
leading to the Galerkin discretisation
að~ud; ~wdÞ þ bðpd; ~wdÞ ¼ 0; cð/d; gdÞ þ bð/d;~udÞ ¼ 0; ð4Þ
where~ud, pd and gd are the finite element approximations to~u, p, and g, and where ~wd and /d are functions from the velocity
and pressure Galerkin trial spaces respectively.

The Galerkin discretisation is said to be LBB stable if, for any function /d from the pressure trial space, there exists kDx

such that
sup
~wd2V

bð/d; ~wdÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að~wd; ~wdÞ

p P kDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð/d;/dÞ

q
;

where V is the velocity trial space, and kDx is a positive constant which is bounded from zero as the maximum edge length Dx
in the finite element mesh tends to zero.
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This is known as the inf–sup condition. LBB stability of a finite element pair is sufficient to show convergence of the solu-
tion of the Galerkin discretisation Eq. (4) to the solution of Eq. (3) at the scaling predicted by approximation theory, i.e.
OðDxnþ1; Dxmþ1Þwhere n and m are the orders of the polynomial spaces used in the Galerkin discretisation for~u and p, respec-
tively, and where Dx is the maximum edge length in the finite element mesh.

If there are spurious eigenvectors which have eigenvalues which tend to zero as Dx! 0, these eigenvectors correspond to
functions /d for which it is not possible to bound bð/d; ~wdÞ away from zero in that limit. As a result, a finite element discret-
isation is said to be LBB stable if the discrete Laplacian is free from spurious eigenvectors. In general these spurious eigen-
vectors consist of extra null vectors as well as ‘‘pesky modes” which have eigenvalues which tend to zero as the mesh size
goes to zero. As well as inhibiting the convergence rate of the numerical solution, the spurious null vectors, which generally
only occur in discretisations using structured meshes, make it impossible to invert the discrete Laplace matrix. The ‘‘pesky
modes”, which arise on unstructured meshes, are nearly as problematic as they lead to very large condition numbers for the
discrete Laplace matrix which make iterative methods very slow to converge, as well as impeding the accuracy of the numer-
ical solution.

Equal order finite element pairs (pairs in which the same discretisation is used for velocity and pressure) are always LBB-
unstable. One way to obtain stable element pairs is to have less degrees of freedom (DOF) for p than DOF for each component
of~u. However, this is not a sufficient condition for stability and element pairs must be tested and analysed to establish their
stability properties. Requiring different DOF for velocity and pressure leads to the employment of staggered grids (such as
the C-grid in finite difference and finite volume methods) and mixed finite elements (see [10] for a discussion of mixed ele-
ments applied to the wave equation). Another frequently employed technique is to increase the number of DOF for ~u in-
creased by introducing interior modes (‘‘bubble” functions). In this paper we suggest an alternative way of increasing the
DOF for ~u by admitting discontinuous functions whilst keeping the continuity constraint for p (combinations of discontin-
uous and continuous functions in mixed element pairs is discussed in [10]). This often means that it is possible to increase
the order of accuracy of the discretisation of p (in this case to quadratic polynomials) whilst keeping the mixed element LBB
stable. Our main motivation for doing this is in geophysical fluid dynamics problems in which a Coriolis term is added to the
equations; these problems often have the system in a state of ‘‘geostrophic balance” for which
~X�~u � �rHp;
where ~X is the Earth’s rotation vector and rH is the horizontal gradient. For an element pair such as P1–P1, the pressure
gradients are piecewise-constant whilst the Coriolis force is piecewise-linear and it is not possible to find a pressure field
to accurately represent this balance. This leads to pressure gradient errors which pollute the solution after short times,
and it becomes necessary to subtract out the balanced pressure (discretised on a higher-order element) in order for the solu-
tion to stay near to balance. For the mixed element pair discussed in this paper, the velocity field is piecewise-linear whilst
the pressure field is piecewise quadratic, and it will be possible to find a pressure field which represents this balance as long
as the velocity field remains relatively continuous. The discontinuous velocity functions also allow one to use standard dis-
continuous Galerkin techniques once advection terms are introduced into the equations. In this paper we focus on investi-
gating the LBB stability of this element pair; in other work we have analysed the geostrophic balance properties of this
element pair [5] and the treatment of advection and diffusion terms in the momentum equation.

For a full treatment of LBB stability and a summary of the stability properties of a wide range of element pairs see [7]; for
an analysis of element pairs applied to the linearised shallow-water equations see [15]. It is also possible to use discontin-
uous functions for both velocities and pressure and this leads to the class of discontinuous Galerkin methods (see [1,8] for
applications of discontinuous Galerkin methods to the wave equation and [13] for applications to ocean modelling). There
have been a number of methods developed to discretise the wave equation in the first-order form given by Eqs. (1, 2) using
discontinuous Galerkin methods for all variables (see [1,2], for example). An application of these schemes to shallow-water
systems is given in [6]. The discontinuous Galerkin method has also been applied extensively to the Maxwell equations in
first-order form ([9], for example).

In Section 2 we introduce the mixed discontinuous/continuous P1D—P2 element in one, two and three dimensions and
show how the boundary conditions are implemented. We also give some values for the p and~u DOF which show the effects
of making~u discontinuous. In Section 3 we compute the numerical dispersion relation for this element applied to the semi-
discrete wave equation which shows that the element is indeed stable in one dimension. The numerical dispersion relation
has a gap in the spectrum between two branches and we show that the modes from the lower frequency branch have smaller
discontinuities in ~u with the lowest frequencies being nearly continuous. In Section 4 we show eigenvalues of discrete La-
place matrices constructed on various unstructured grids in two and three dimensions which show that the element is sta-
ble. In Section 5 we show the results of a wave equation calculation in two dimensions on an unstructured grid which
illustrates the absence of spurious modes, and in Section 6 we give results of convergence tests for the element pair applied
to the Poisson equation which confirm LBB stability. Finally, in Section 7 we give a summary of the paper and discuss other
aspects of this element which may make it a good choice for ocean modelling applications.

2. The mixed element

In this section we describe our mixed element formulation in one, two and three dimensions.
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2.1. Weak formulation

We start with the wave equation in the form given by Eqs. (1, 2) with boundary conditions
~u �~n ¼ f on oXN; p ¼ g on oXD; ð5Þ
where oXN and oXD form a partition of the boundary oX of the domain X.
To obtain our mixed finite element formulation, we multiply Eq. (1) by discontinuous test functions ~w and multiply Eq.

(2) by continuous test functions /, then integrate over an element E to obtain
d
dt

Z
E

~w �~udV ¼ �
Z

E

~w � rpdV ; ð6Þ

d
dt

Z
E

/pdV ¼ �
Z

E
/r �~udV : ð7Þ
Integrating Eq. (7) by parts and making use of the boundary conditions gives
d
dt

Z
E

~w �~udV ¼ �
Z

E

~w � rpdV ; ð8Þ

d
dt

Z
E

/pdV ¼
Z

E
r/ �~udV �

Z
oE=oX

~n � ~~u/dS�
Z

oE\oX
f /dS; ð9Þ
where ~~u is the value of ~u on the element boundary oE, and ~n is the unit normal to oE. Here ~~u is determined by the particular
choice of discontinuous Galerkin scheme that we use, for example the centred scheme takes the average of the values of~u on
either side of the boundary.

We sum over all the elements to obtain
d
dt

Z
X

~w �~udV ¼ �
Z

X

~w � rpdV ; ð10Þ

d
dt

Z
X

/pdV ¼
Z

X
r/ �~udV �

X
i

Z
Ci

½½~ni � ~~u/��dS�
Z

oX
f /dS; ð11Þ
where Ci ði ¼ 1; . . . ;nCÞ is the ith interior element edge with normal vector~ni, and where ½½~n � ~~u�� is the jump in~n � ~~u across the
element boundary. The reason that the surface integral appears as a jump term is that the test function / is continuous
across element boundaries, and therefore the trial functions from the elements on either side of each boundary appear in
the same equation. If / were discontinuous then this would not occur.

To obtain conservation we require that ½½ ~~u �~n�� ¼ 0: the same value for the flux is used on each side of the element bound-
ary. Since / is continuous, this means that ½½ ~~u �~n/�� ¼ 0. This means that the integral over each Ci vanishes and we obtain
d
dt

Z
X

~w �~udV ¼ �
Z

X

~w � rpdV ; ð12Þ

d
dt

Z
X

/pdV ¼
Z

X
r/ �~udV �

Z
oX

f /dS: ð13Þ
2.2. The P1D—P2 element

We then make the choice that the vector functions be discretised with discontinuous piecewise-linear (P1D) elements and
the scalar functions be discretised with continuous quadratic (P2) elements. The reason for this choice is that for all but the
coarsest meshes, this element has more ~u DOF than p DOF.

We write the global finite element expansions in the form
~uið~xÞ ¼
Xmu

a¼1

ua;iNað~xÞ; pð~xÞ ¼
Xmp

b¼1

pb
�Nbð~xÞ;
where
u1;i ¼ ½u1;i; . . . ;umu ;i�; i ¼ 1; . . . ;d; p ¼ ½p1; . . . ;pmp
�;
and where mu;mp are the numbers of DOF for each component of ~u and for p, respectively. This leads to the following
equations:
d
dt

Muui ¼ �Cip; i ¼ 1; . . . ; d;
d
dt

Mpp ¼
Xd

i¼1

CT
i ui � f;
where
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Mu
a;b ¼

Z
X

Nað~xÞNbð~xÞdVð~xÞ;

Ca;b;i ¼
Z

X
Nað~xÞ

o

oxi

�Nbð~xÞdVð~xÞ;

Mp
a;b ¼

Z
X

�Nað~xÞ�Nbð~xÞdVð~xÞ;

fb ¼
Z

oXN

�Nbð~xÞf ð~xÞdS;
and d is the number of physical dimensions.
One of the advantages of this element choice is that the mass matrix Mu is block diagonal (since~u is discontinuous and so

each global basis function is supported on only one element). This means that the discrete Laplacian is still sparse and it is
not necessary to lump the mass matrix when solving the pressure equation for incompressible flow.

2.2.1. One dimension
In one dimension on a bounded interval of I elements, there are two local DOF per element for u, and so there are 2I global

DOF as~u is discontinuous. There are three local DOF per element for p but there are I � 1 global continuity constraints on the
interfaces between each element (see Fig. 1). This means that there are 3I � ðI � 1Þ ¼ 2I þ 1 global DOF for p, and so there is
always one more p DOF than u DOF. However, for strong Dirichlet conditions for p, or periodic boundary conditions, we de-
crease the number of p DOF and gain the potential for a stable element.

2.2.2. Two dimensions
In two dimensions we have F triangular elements, with three local DOF per element~u and six local DOF per element for p.

There are no continuity constraints for~u and so there are 3F DOF (see Fig. 1). There is a p DOF situated at each vertex and a p
DOF situated on each edge, and so there are V þ E p global DOF, where V is the number of vertices and E is the number of
edges. Euler’s formula gives E ¼ V þ F þ 1 and so there are 2V þ F þ 1 h DOF. This means that it is always possible to modify
a mesh so that there are more~u DOF than p DOF, for example by repeatedly inserting new vertices into a triangles, breaking
them into four, each time increasing V by 1 and F by 3. In practise, useful meshes generally satisfy F > V and so this property
is satisfied. Strong Dirichlet boundary conditions for~u may reduce the number of ~u DOF below that of p. Table 1 gives some
DOF for various unstructured Delaunay meshes in a square domain. Note that there are more velocity DOF than pressure DOF
for all the meshes down to very large element sizes.
Element

u node

p node
u node

p node

This figure shows the DOF for the one-dimensional P1D—P2 element (left) and the two-dimensional P1D—P2 element (right). In one dimension, each
t contains two local ~u DOF and three local p DOF, but the global p DOF are constrained to be continuous across element boundaries. In two
ions there are three local ~u DOF and six local p DOF.

le shows degrees of freedom for the P1D—P2 element pair in two dimensions

riangles 36 79 151 1586 15,574
ertices 24 48 87 820 7890

108 237 453 4758 46,722
85 176 326 2414 31,354

io of ~u DOF to p DOF appears to converge to 1.5 for large unstructured meshes.



Table 2
This table shows degrees of freedom for the P1D—P2 element pair in three dimensions

Mesh tetrahedra 44 215 398 2003 19,140
Mesh vertices 26 80 130 488 3690
Mesh edges 93 227 633 2792 24,165
~u DOF 176 860 1592 8012 77,640
p DOF 119 307 763 3280 27,855

The ratio of ~u DOF to p DOF appears to converge to 2.5 for large unstructured meshes.
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2.2.3. Three dimensions
In three dimensions there are four local~u DOF and ten local p DOF. As there are no continuity constraints for~u, there are

4T global~u DOF, where T is the total number of tetrahedra. There is one global p DOF on each vertex, and one global p DOF on
each edge, so there are V þ E global p DOF. As for three dimensions, it always possible to increase T relative to V þ E by split-
ting elements. Table 2 gives some DOF for sample unstructured Delaunay meshes in a cubic domain. Note that there are
more velocity DOF than pressure DOF for all the meshes down to very large element sizes.

3. One-dimensional analysis

In this section we analyse the P1D—P2 element applied to the scalar wave equation in one dimension on a regular grid
with periodic boundary conditions.

The local (elemental) mass and gradient matrices are:
�Mu
ij ¼

Z Dx

0
NiNjdx; �Mp

ij ¼
Z Dx

0

�Ni
�Njdx; �Cij ¼ �

Z Dx

0
Ni

d
dx

�Nj dx;
where fN1;N2g are the linear Lagrange polynomials used to represent u in the element, f�N1; �N2; �N3g are the quadratic La-
grange polynomials used to represent p, �Mu is the local mass matrix for u, �Mp is the local mass matrix for p and �C is the local
gradient matrix. These matrices are
�C ¼
�5=6 2=3 1=6
�1=6 �2=3 5=6

� �
;

�Mu ¼ Dx
1=3 1=6
1=6 1=3

� �
;

�Mp ¼ Dx
2=15 1=15 �1=30
1=15 8=15 1=15
�1=30 1=15 2=15

0
B@

1
CA:
After assembling the equations on a regular grid with element width Dx, we obtain
Dx
6

d
dt
ð2un

þ þ unþ1
� Þ ¼ �

1
6
ð�5pn þ 4pnþ1=2 þ pnþ1Þ; ð14Þ

Dx
6

d
dt
ðun
þ þ 2unþ1

� Þ ¼ �
1
6
ð�pn � 4pnþ1=2 þ 5pnþ1Þ; ð15Þ

Dx
30

d
dt
ð�pn�1 þ 2pn�1=2 þ 8pn þ 2pnþ1=2 � pnþ1Þ ¼ 1

6
ðun�1
þ þ 5un

� � 5un
þ � unþ1

� Þ; ð16Þ

Dx
30

d
dt
ð2pn þ 16pnþ1=2 þ 2pnþ1Þ ¼ 1

6
ð4un

þ � 4unþ1
� Þ; ð17Þ
where pn is the value of p at the grid point xn, pnþ1=2 is the value of p at the midpoint xnþ1=2, un
� is the discontinuous u value to

the left of xn and un
þ is the value to the right.

We can obtain a dispersion relation for the semi-discrete system (14)–(17) by substituting the ansatz
un
þ ¼ ûþeiðkxn�xtÞ; un

� ¼ û�eiðkxn�xtÞ;

pn ¼ p̂eikðxn�xtÞ; pnþ1=2 ¼ ~peiðkxnþ1=2�xtÞ:
We obtain the matrix equation
�2iw �iwei/ �5þ ei/ 4e1=2i/

�iw �2iwei/ �1þ 5ei/ �4e1=2i/

25� 5e�i/ �25þ 5ei/ �iw 8� 2 cos /ð Þ �4iw cos /=2
�20 20ei/ �2iw 1þ ei/

� �
�16iwe1=2i/

2
6664

3
7775

ûþ

û�

p̂
~p

0
BBB@

1
CCCA ¼

0
0
0
0

0
BBB@

1
CCCA; ð18Þ



Fig. 2. Plot of the dispersion relation for the semi-discrete equations obtained from the P1D—P2 element in one dimension. The eigenspectrum has two
branches, with a spectral gap separating small and large eigenvalues. The lower branch is very straight (and hence accurate).
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where / ¼ kDx and w ¼ xDx. After some algebraic manipulation using Maple, this yields
w ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
26þ 4 cosð/Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
474þ 448 cosð/Þ � 22 cosð2/Þ

p
6� 2 cos /

s
:

A plot of this numerical dispersion relation is given in Fig. 2. The eigenvalues in the lower branch are monotonically increas-
ing, and there is a gap in the spectrum at kDx ¼ p. The eigenvalues do not return to zero in the upper branch. The numerical
dispersion relation indicates that there are no spurious modes in the discretisation and so the element is stable. Another fea-
ture is that the low frequency branch is very close to the exact dispersion relation for the wave equation.

To investigate this gap in the spectrum further, we used this solution to recover the structure of the modes by looking at
the eigenvectors of the matrix in Eq. (18) when x takes these values. We normalised the eigenvectors and calculated the
magnitude of the difference between ûþ and û�, which gives a measure of the discontinuity in each mode. Fig. 3 illustrates
that the level of discontinuity for modes from the lower frequency branch is much lower than for those from the higher fre-
quency branch.

4. Analysis of discrete Laplacian for two- and three-dimensional unstructured meshes

In this section we construct the discrete Laplacian using the P1D—P2 element for unstructured meshes in two and three
dimensions and check the eigenvalues for spurious modes. The meshes were produced by Triangle [16] (in two dimensions)
and Tetgen [17] (in three dimensions). The matrices C, Mu and Mh were assembled using exact quadrature and the eigen-
values of the discrete Laplacian ðMpÞ�1P

iC
T
i ðM

uÞ�1Ci were computed numerically using Scientific Python.

4.1. Two dimensions

Table 3 shows the computed eigenvalues for the discrete Laplacian obtained from the P1D—P2 element in two dimensions
with Neumann boundary conditions for ~u and Dirichlet boundary conditions for p. The meshes are unstructured in a 1� 1
square domain.

The Dirichlet boundary conditions for p prohibit the constant p solution with eigenvalue zero and so the smallest physical
eigenvalue is 2p2 corresponding to p ¼ sinðxÞ sinðyÞ. It is clear from the table that there are no spurious eigenvalues (i.e.
eigenvalues that scale with the mesh size) and all of the eigenvalues correspond to physical modes.

Table 4 shows the computed eigenvalues for the discrete Laplacian obtained from the P1D—P2 element in two dimensions
with Neumann boundary conditions for p and Dirichlet boundary conditions for~u, on the same 1� 1 domain. The Neumann
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Fig. 3. Plots of the magnitude of the discontinuity in u of the eigenmodes for the low (bottom plot) and high (top plot) frequency branches of the dispersion
relation. The low frequency modes exhibit low levels of relative discontinuity and the high frequency modes are very discontinuous with the fastest mode
being completely out of phase.

Table 3
This table shows eigenvalues of the discrete Laplacian obtained from the P1D—P2 element pair in two dimensions with Dirichlet boundary conditions

Max. triangle area Number of elements Vector of eigenvalues in increasing magnitude

0.1 14 [19.96,51.56,53.31,95.24,102.44, 109.80,. . ., 555.49,632.87]
0.05 36 [19.784,49.812,50.003,81.199,81.199, . . .,4689.754,9063.670]
0.01 151 [19.741,49.375,49.379,79.104,79.104, . . .,88388.575,210048.520]

All the eigenvalues correspond to physical modes.
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Table 4
This table shows eigenvalues of the discrete Laplacian obtained from the P1D—P2 element pair in two dimensions with Neumann boundary conditions

Max. triangle area Number of elements Vector of eigenvalues in increasing magnitude

0.1 14 [0.00,9.89,9.90,19.90, 41.22,. . .,830.0,960.9]
0.05 36 [0.00,9.88,9.88,19.80, 40.43,. . .,15,870,41,690]
0.01 151 [0.00,9.87,9.87,19.74, 39.50,. . .,177,300,3,274,000]

All the eigenvalues correspond to physical modes.

Table 5
This table shows eigenvalues of the discrete Laplacian obtained from the P1D—P2 element pair in three dimensions with Dirichlet boundary conditions

Max. tetrahedral volume Number of elements Vector of eigenvalues in increasing magnitude

0.1 44 [32.143,78.474,79.665,109.179,109.179, . . .,465.786,599.494]
0.01 215 [30.057,61.666,61.781,62.011,62.011, . . .,4208.501,4542.808]
0.005 398 [29.783,60.246,60.452,60.598,60.598, . . .,6832.947,8060.542]
0.004 487 [29.757,60.169,60.298,60.313,60.313, . . .,8555.671,10835.590]
0.003 681 [29.694,59.783,59.847,59.892,59.892, . . .,9626.549,11173.040]

All the eigenvalues correspond to physical modes, indicating that the element pair is stable.

Table 6
This table shows eigenvalues of the discrete Laplacian obtained from the P1D—P2 element pair in three dimensions with Neumann boundary conditions

Max. tetrahedral volume Number of elements Vector of eigenvalues in increasing magnitude

0.1 44 [0.00,9.93,9.93,10.06, 20.15,. . .,984,1097]
0.01 215 [0.00,9.88,9.88,9.89, 19.83,. . .,5385,5931]
0.005 398 [0.00,9.874,9.874,9.875, 19.78,. . .,7746,12,070]
0.004 487 [0.00,9.873,9.873,9.873, 19.78,. . .,10,780,13,010]
0.003 681 [0.00,9.872,9.872,9.873, 19.76,. . .,11,600,12,330]

All the eigenvalues correspond to physical modes, indicating that the element pair is stable.
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boundary conditions for p admit the constant p solution with eigenvalue zero. The next two physical eigenfunctions are
sinðpxÞ and sinðpyÞ which both have eigenvalues p2. There are no spurious eigenvalues.

4.2. Three dimensions

Table 5 shows the computed eigenvalues for the discrete Laplacian obtained from the P1D—P2 element in three dimen-
sions with Neumann boundary conditions for ~u and Dirichlet boundary conditions for p. The meshes are unstructured in a
1� 1� 1 cubic domain.

As in the two-dimensional case, the Dirichlet boundary conditions for p prohibit the constant p solution with eigenvalue
zero and so the smallest physical eigenvalue is 3p2 corresponding to p ¼ sinðxÞ sinðyÞ sinðzÞ. Table 5 shows that there are no
spurious eigenvalues.

Table 6 shows the computed eigenvalues for the discrete Laplacian obtained from the P1D—P2 element in three dimen-
sions with Neumann boundary conditions for p and Dirichlet boundary conditions for ~u. The meshes are unstructured in a
1� 1� 1 cubic domain.

The Neumann boundary conditions for p admit the constant p solution with eigenvalue zero. The next three physical
eigenfunctions are sinðpxÞ, sinðpyÞ and sinðpzÞ which both have eigenvalues p2. There are no spurious eigenvalues.

5. Numerical test for the wave equation

In this section we test the P1D—P2 element as applied to the wave equation in two dimensions, with the aim of checking
that spurious oscillations do not appear and that the solution remains smooth.

We discretised the equations in time using the Störmer–Verlet method given by
Mu unþ1=2
i � un

i

2Dt
¼ �Cipn; i ¼ 1; . . . d;

Mp pnþ1 � pn

Dt
¼
Xd

i¼1

CT
i unþ1=2;

Mu unþ1
i � unþ1=2

i

2Dt
¼ �Cipnþ1; i ¼ 1; . . . d:



Fig. 4. Numerical results obtained from solving the 2-dimensional wave equation in a square domain of area 1 with an unstructured grid with triangular
elements of typical area 0.001. The wave speed is c ¼ 1 and the timestep is Dt ¼ 0:001. Top-left: plot of energy error against time. Top-right: plot of p at time
t ¼ 20:0. Bottom-left and bottom-right: plots of the x- and y-components of ~u. These results show that the numerical solution stays smooth after a large
number of timesteps, which is a good indicator that the method is stable. Although it appears from the plot that ~u remains almost continuous, small
discontinuities are present in the solution.

C.J. Cotter et al. / Journal of Computational Physics 228 (2009) 336–348 345
This method is second-order in time, and is symplectic, consequentially there exists a conserved energy which is equal to the
exact spatially discretised energy plus a correction of magnitude OðDt2Þ (see [12] for a review of the Störmer–Verlet method
applied to PDEs). This means that small-scale energy will not be dissipated and it provides a good test of the spatial discret-
isation. As this method is explicit, there is a numerical CFL condition which requires that the fastest oscillation in the system,
corresponding to the largest eigenvalue of the discrete Laplacian, should be resolved in time. This discretisation still requires
linear systems to be solved to obtain~u and p at the next time level, although the mass matrix for~u is block diagonal (with one
block per element).

Simulation results are given in Fig. 4. These results show that the solutions remain smooth and that there are no spurious
modes polluting the solution. This good behaviour arises from the stability of the P1D—P2 element.

6. Convergence tests

In this section we give some results of convergence tests for the P1D—P2 element pair in two and three dimensions, as
well as a comparison with the P1D—P1 element pair. In these tests we formed the discrete Laplacian and used it to numer-
ically solve the Poisson equation.

We ran tests using the following four problems:

� r2p ¼ sinð2pxÞ sinð2pyÞ in 0 6 x 6 1, 0 6 y 6 1 with Dirichlet boundary conditions p ¼ 0 on x ¼ 0, x ¼ 1, y ¼ 0 and y ¼ 1.
� r2p ¼ cosð2pxÞ cosð2pyÞ in 0 6 x 6 1, 0 6 y 6 1 with Neumann boundary conditions~n � rp ¼ 0 on x ¼ 0, x ¼ 1, y ¼ 0 and

y ¼ 1.
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� r2p ¼ sinð2pxÞ sinð2pyÞ sinð2pzÞ in 0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 1 with Dirichlet boundary conditions p ¼ 0 on x ¼ 0,
x ¼ 1, y ¼ 0, y ¼ 1, z ¼ 0 and z ¼ 1.

� r2p ¼ cosð2pxÞ cosð2pyÞ cosð2pzÞ in 0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 1, with Neumann boundary conditions ~n � rp ¼ 0 on
x ¼ 0, x ¼ 1, y ¼ 0, y ¼ 1, z ¼ 0 and z ¼ 1.

Fig. 5 shows the results of these tests, with error plotted against maximum edge length in an unstructured mesh. The
error is quadratic for both Dirichlet and Neumann boundary conditions. This error convergence rate confirms the LBB sta-
Fig. 5. This figure shows error plots for Poisson equation tests in two (upper plot) and three (lower plot) dimensions. Error is plotted against maximum edge
length in the mesh. The Dirichlet condition test results are shown as dotted lines and the Neumann condition test results are shown as dash-dotted lines. A
continuous line with quadratic scaling (proportional to mean edge length) is given in each plot for reference, showing that the error is quadratic in the edge
length.



Fig. 6. This figure shows error plots for Poisson equation tests in two (upper plot) and three (lower plot) dimensions. Error is plotted against the number of
pressure DOF, for the Dirichlet condition tests only. The results using the P1D—P2 element pair are shown as dotted lines and the results using the P1D—P1
element pair are shown as dash-dotted lines. The P1D � P2 is more accurate (although with the same error scaling) than the P1D—P1 element.
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bility of the element pair since the error scaling is the same as that predicted by approximation theory (see [7], for example).
The error scales quadratically since the velocity element used is linear.

Fig. 6 shows the results of comparison between the P1D—P2 element pair and the P1D—P1 element pair with discontin-
uous linear velocity and continuous linear pressure, with error plotted against number of pressure DOF. Whilst the two ele-
ment pairs have the same convergence scaling, the P1D—P2 element is more accurate for the same number of pressure DOF
for sufficiently fine meshes.
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7. Summary and discussion

In this paper we introduced the P1D—P2 mixed element which has discontinuous velocity and continuous pressure. This
choice means that the number of DOF for velocity can be increased in order to obtain a stable element. In Section 2 we de-
scribed the construction of the element in one, two and three dimensions and gave example values for the ~u and p DOF. In
future implementations in the three-dimensional non-hydrostatic Imperial College Ocean Model (ICOM) [14] we will inves-
tigate the relative merits of P1D—P2, P1D—P3, P2D—P3 and other combinations, including augmenting the~u space with bub-
ble functions, in practical applications.

In Section 3 we gave a linear normal mode analysis for the element on a regular grid in one dimension with periodic
boundary conditions which showed that the element is stable in this case. The dispersion relation is monotonically increas-
ing with a spectral gap between the two branches, and the lower frequency branch has relatively continuous eigenfunctions
with almost continuous eigenfunctions at the lowest frequencies.

In Section 4 we presented calculations of eigenvalues of the discrete Laplace matrix obtained from unstructured meshes
in two and three dimensions which demonstrated that the element is stable in these cases. In Section 5 we presented results
from a wave equation calculation on a two-dimensional grid which demonstrated that the solutions stay smooth for rela-
tively long time intervals.

In Section 6 we computed numerical solutions to the Poisson equation (which must be solved as part of the incompress-
ible Navier–Stokes equations) obtained using the P1D and P1D–P1 element pairs. The numerical error was plotted for the P1D

element, with the optimal quadratic convergence indicating that the element is LBB stable. The comparison with the P1D–P1
element showed that although it seems sub-optimal to use piecewise quadratic pressure when the same error scaling can be
obtained with piecewise-linear pressure (or even piecewise-constant), the P1D element is more accurate for the same com-
putational cost (counting pressure DOF) and hence has the potential to be a very useful element.

This type of element with discontinuous velocity and continuous pressure has some other properties that may make it
favourable for use in geophysical codes such as ICOM in which terms such as advection, diffusion and Coriolis acceleration
must also be included (this can be done following a standard discontinuous Galerkin approach). The discontinuous element
for velocity means that the discretisation locally conserves momentum, and allows the use of upwinding and flux-limiting to
improve the treatment of advection (see, for example, [13]). As the mass matrix for ~u is block diagonal, the

P
iC

T
i ðM

uÞ�1Ci

matrix remains sparse and so it is not necessary to lump the mass matrix. This makes the discretisation more accurate
and reduces problems with balancing various lumped and non-lumped terms.
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